In our previous study, we found that the vasodilation of retinal arterioles induced by acetylcholine and BMS-191011, a large-conductance Ca2+-activated K+ (BKCa) channel opener, were diminished in diabetic rats. Currently, few agents ameliorate the impaired vasodilator responses of retinal blood vessels. Our recent finding that the intravenous infusion of L-citrulline dilated retinal arterioles, suggests that L-citrulline could be a potential therapeutic agent for circulatory disorders of the retina. In this study, we determined the effect of an oral L-citrulline treatment on impaired acetylcholine- and BMS-191011-induced vasodilation in the retinal arterioles of diabetic rats. To induce diabetes, rats were administered an intravenous dose of streptozotocin (65 mg/kg) and a 5% D-glucose solution as drinking water. The L-citrulline (2 g/kg/day) and L-arginine (2 g/kg/day) treatments commenced either 15 days before or just after the streptozotocin injection and continued throughout the experimental period. A 29-day treatment with L-citrulline, but not L-arginine, significantly ameliorated the impaired acetylcholine- and BMS-191011-induced retinal vasodilation in diabetic rats without affecting their plasma glucose levels. The 2-week L-citrulline treatment tended to ameliorate the dysfunction of the acetylcholine-induced retinal vasodilation in diabetic rats. In conclusion, these results showed that the retinal blood vessel dysfunction induced by diabetes mellitus could be prevented by the long-term administration of L-citrulline and suggest that the latter could play a potentially prophylactic role in diabetic retinopathy.
Read full abstract