Gold nanoparticles (AuNPs) can be used in diagnostic and therapeutic applications. The development of facile and fast synthetic approaches is accordingly desirable towards ready-to-use biomedical materials. We report a practical one-pot method for the synthesis in aqueous media and room temperature of surface-decorated AuNPs with enhanced biological responses. The gold ions could be reduced using only polyethyleneimine (PEI) derivatives containing sugar and-or alkyl chains acting simultaneously as reducing and stabilizing agent, without the aid of any other mediator. The process is possibly potentialized by the presence of the amino groups in the polymer chains which further confer colloidal stability. The kinetics of AuNPs nucleation and growth depends on the chemical nature of the polymer chains. Particularly, the presence of lactose moieties conjugated to the PEI chains conducted to surface-decorated AuNPs with low cytotoxicity that are remarkably faster uptaken by HepG2 cells. These cells overexpress asialoglycoprotein (ASGP-R), a galactose receptor. These findings may kick off significant advances towards the practical and ready-to-use manufacturing of functionalized AuNPs towards cell-targeting since the methodology is applicable for a large variety of other ligands that can be conjugated to the same polymer chains.
Read full abstract