This work aims at clarifying the fundamental mechanisms of non-equilibrium alternating current gliding arc discharge (GAD) by investigating effects of gas compositions and pressures on the GAD characteristics with electrical and optical methods. Interestingly, the glow-to-spark transition was found by adding O2 or CH4 into the argon or modulating the power supply. This transition occurs attributed to the fact that the discharge mode is largely affected by the effective electron decay time (τ) as well as the feedback response of the power supply to the free electron density in the GAD. Short τ or low free electron density tends to result in the spark-type discharge. It further implies that the power supply characteristics is crucial for discharge mode control. The pressure effects on the GAD characteristics were found to vary with gas composition when the same alternating current power supply was used. In N2 or air, the emission intensity from the plasma column increases with pressure while the mean electric field strength (E) along the plasma column decreases with pressure. Differently, in Ar, the emission intensity and E do not change much with pressure. It can be explained by the different energy partition and transfer pathways between monatomic and molecular species. The molecular gases have vibrational excitation pathways to facilitate the electronic excitation and ionization that is different from the monatomic gas.