We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (approximately 32 nm), nondestructive and noncontact measurement, and larger measurement ranges (+/- 80 microm) for a numerical aperture of 0.21 in a transparent measurement medium. The technique can be used without conductivity and pretreatment.