Existing pharmacogenetic algorithms cannot fully explain warfarin dose variability in allpatients. CYP2C9*13 is an important allelic variant in the Han Chinese population. However, adjustment of warfarin dosing in CYP2C9*13 variant carriers remains unclear. To the best of our knowledge, this study is the first to assess the effects of adjusting warfarin dosages in Han Chinese patients harbouring CYP2C9*13 variants. In total, 971 warfarin-treated Han Chinese patients with atrial fibrillation were enrolled in this study. Clinical data were collected, and CYP2C9*2, *3, *13 and VKORC1-1639 G > A variants were genotyped. We quantitatively analysed the effect of CYP2C9*13 on warfarin maintenance dose and provided multiplicative adjustments for CYP2C9*13 using validated pharmacogenetic algorithms. Approximately 0.6% of the Han Chinese population carried CYP2C9*13 variant, and the genotype frequency was between those of CYP2C9*2 and CYP2C9*3. The warfarin maintenance doses were significantly reduced in CYP2C9*13 carriers. When CYP2C9*13 variants were not considered, the pharmacogenetic algorithms overestimated warfarin maintenance doses by 1.03-1.16mg/d on average. The actual warfarin dose in CYP2C9*13 variant carriers was approximately 40% lower than the algorithm-predicted dose. Adjusting the warfarin-dosing algorithm according to the CYP2C9*13 allele could reduce the dose prediction error. Our study showed that the algorithm-predicted doses should be lowered for CYP2C9*13 carriers. Inclusion of the CYP2C9*13 variant in the warfarin-dosing algorithm tends to predict the warfarin maintenance dose more accurately and improves the efficacy and safety of warfarin administration in Han Chinese patients.
Read full abstract