Maternal effects play important roles in phenotypic variations among individuals and are thus considered to regulate population performance in responses to environmental stress. High ammonia levels are known to suppress population growth of the rotifer Brachionus calyciflorus. However, it remains unclear whether maternal environmental ammonia stress influences the offspring phenotypic variation and, if so, how it affects the offspring population dynamics in the rotifer. The present work examined variations in life history, morphology, feeding and digestive activities of B. calyciflorus offspring affected by maternal ammonia stress and the effect of the above variations on offspring population dynamics. We observed increased fitness in the offspring population affected by the cumulative maternal effect. There was a trade-off between offspring (F1) survival and reproductive investment under maternal (F0) ammonia stress. Population growth of the offspring possibly increased via decreasing body size and posterolateral spine length while enhancing cellulase activity. Moreover, the absence of the posterolateral spine of the rotifer was a sensitive response to maternal ammonia stress. These findings underscore maternal environmental stress as an important source of phenotypic variations and highlight these multiple responses work together to affect population dynamics.
Read full abstract