ABSTRACT The continuing fragmentation of forests has been a threat to the maintenance of genetic resources. Genetic diversity is fundamental to the survival of species in natural environments in the long term, as well as being the basis for genetic improvement. The objective of this study was to evaluate the genetic diversity in natural populations of Hancornia speciosa and to contribute to the development of conservation strategies. We sampled 105 individuals of H. speciosa, distributed in seven populations. The ISSR (Inter-Simple Sequence Repeat) markers provided 70 loci, of which 81% were polymorphic. The mean genetic diversity of Nei (h) was 0.19, and the Shannon index (I) was 0.27. The h and I diversity indices ranged respectively from 0.16 to 0.24 in the PAD (Parque das Dunas) population and from 0.21 to 0.29 in MAC (Macaíba) population. Resulting from a Bayesian analysis, the genotypes were divided into four groups (K = 4). The allelic diversity patterns observed indicated the occurrence of the genetic bottleneck in all populations, according to the stepwise mutation model (SMM). The infinite allele model (IAM) revealed an imbalance between mutation and genetic drift only in the PAD population. Genetic conservation strategies for H. speciosa should cover each genetic group that was differentially structured. We recommend in situ conservation and the creation of germplasm banks, especially with the PAD population which demonstrated the lower genetic diversity and decreased effective population size according to the two mutational models.
Read full abstract