To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Read full abstract