Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods demand substantial computational resources, making them impractical for highly complex models. Here, we introduce SMoRe GloS (Surrogate Modeling for Recapitulating Global Sensitivity), a novel, computationally efficient method for performing global sensitivity analysis of ABMs. By leveraging explicitly formulated surrogate models, SMoRe GloS allows for comprehensive parameter space exploration and uncertainty quantification without sacrificing accuracy. We demonstrate our method's flexibility by applying it to two biological ABMs: a simple 2D cell proliferation assay and a complex 3D vascular tumor growth model. Our results show that SMoRe GloS is compatible with simpler methods like the Morris one-at-a-time method, and more computationally intensive variance-based methods like eFAST. SMoRe GloS accurately recovered global sensitivity indices in each case while achieving substantial speedups, completing analyses in minutes. In contrast, direct implementation of eFAST amounted to several days of CPU time for the complex ABM. Remarkably, our method also estimates sensitivities for ABM parameters representing processes not explicitly included in the surrogate model, further enhancing its utility. By making global sensitivity analysis feasible for computationally expensive models, SMoRe GloS opens up new opportunities for uncertainty quantification in complex systems, allowing for more in depth exploration of model behavior, thereby increasing confidence in model predictions.
Read full abstract