The issue of high power density in chips has become one of the bottlenecks restricting the improvement of chip performance. Silicon-based microchannel heat sinks (Si-MCHS) can guide the cooling fluid close to the chip junction, significantly enhancing the cooling capability. Due to the rapid changes in chip power consumption, understanding the flow and heat transfer performance of Si-MCHS, especially their dynamic heat transfer performance, is crucial. This paper introduces the fabrication of Si-MCHS and experimentally tests its static and dynamic performance. The microchannels can handle a maximum thermal flux of 71.3 W/cm2. It was found that the temperature response process of Si-MCHS mirrors that of a first-order system’s step response or zero-input response. Upon a sudden change in power consumption, the thermal response can reach 90 % of the steady-state temperature difference (ΔT) within 4 s and 50 % ΔT within 1 s. Increasing the pump speed significantly reduces the response time, while different power step changes have minimal impact on the response time. Consequently, we have formulated a graded flow rate control strategy based on the flow and heat transfer performance of Si-MCHS, which achieves effective flow rate control.
Read full abstract