As part of a much larger study on non-covalent interactions in binary adducts, we have explored the solid-state structures of bromopentafluorobenzene (C6F5Br) using differential scanning calorimetry (DSC), variable-temperature powder X-ray diffraction (VT-PXRD), and single-crystal X-ray diffraction (SXD). DSC data initially indicated a single solid-state phase below the freezing point, but revealed additional weak transitions upon heating. The crystal structures of three solid-state phases have been solved. The SXD data showed that phases I and IV are centrosymmetric, whilst phase II is polar. However, the structure of phase III remains elusive due to the changing phase behaviour of C6F5Br that is determined as much as by kinetics as thermodynamics. The results underline the need for multiple analytical techniques to study non-covalent interactions and offer valuable data for refining computational models in crystal structure prediction and machine learning. A comparison with the iodinated counterpart is also made.
Read full abstract