The idea of tracking video objects has evolved to facilitate the area of surveillance systems. However, most current research efforts lie in speedy abnormal event detection and tracking of objects of interest tracking. However, the primary challenge is dealing with complex video structures' inherent redundancy. The existing research models for video tracking are more inclined towards improving accuracy. In contrast, the consideration of a more significant proportion of mobile object dynamics, e.g. abnormal events, in motion over the crowded video frame sequence is mainly overlooked, which is essential to study a specific movement pattern of the object of interest appearing in the frame sequence concerning the cost of computation factors. The study thereby introduces a unique strategy of speedy abnormal event detection and tracking, which facilitates video tracking to assess a specific pattern of object of interest movement over complex and crowded video scenes, considering a unique learning-based approach. The extensive simulation outcome further shows that the proposed tracking model accomplishes better tracking accuracy yet retains an optimized computation cost compared to the baseline studies. The computation of video tracking also accomplishes higher detection rates even in the challenging constraints of partial/complete occlusion, illumination variation and background clutter.
Read full abstract