This research deals with the overall predefined-time stability (PTS) of Unmanned Aerial Vehicles (UAV) ensuring rapid convergence based on a novel sliding mode control (SMC). The strength of predefined-time sliding manifolds lies in the convergence rate can be adjusted by an explicit parameter. For the limitation of chattering encountered by predefined-time SMC (PTSMC), a variable gain super-twisting algorithm (STA) with additional linear items is designed as the switch controller. To conserve the restrained computational resources of quadrotors, the equivalent control input is approximated by a multiple feedback recurrent neural network (MFRNN) directly, which is challenging for general recurrent neural networks. The proposed MFRNN is characterized by the incorporation of double-loop feedback within the layers, augmenting its capacity for accurate approximation. To address the vanishing gradients commonly encountered with traditional activation functions, LeakyRelu is chosen. The Lyapunov theory is utilized to ensure the PTS of overall system and obtain the MFRNN weight update laws. An experiment is conducted to validate the proposed scheme.
Read full abstract