Modern aerodynamic design optimization aims to discover optimal configurations using computational fluid dynamics under complex flow conditions, which is a typical expensive multi-objective optimization problem. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) combined with efficient global optimization is a promising method but requires enhanced efficiency and faces limitations in its application to multi-objective aerodynamic design optimization (MOADO). To address the issues, an efficient parallel MOEA/D assisted with variable-fidelity optimization (VFO) is proposed for solving MOADO, called the MOEA/D-VFO algorithm. Variable-fidelity surrogates are built for objectives and constraints, achieving higher accuracy using fewer high-fidelity samples and a great number of low-fidelity samples. By retaining more good candidates, the sub-optimization problems defined by decomposing original objectives are capable of discovering more favorable samples using MOEA/D, which prompts optimization convergence. A constraint-handling strategy is developed by incorporating the probability of feasibility functions in the sub-optimizations. The selection of new samples for parallel evaluation is improved by filtering out poor candidates and selecting effective promising samples, which improves the feasibility and diversity of solved Pareto solutions. A Pareto front (PF) can be efficiently found in a single optimization run. The proposed approach is demonstrated by four analytical test functions and verified by two aerodynamic design optimizations of airfoils with and without constraints, respectively. The results indicate that the MOEA/D-VFO approach can greatly improve optimization efficiency and obtain the PF satisfying constraints within an affordable computational budget.
Read full abstract