Abstract Background Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Aims To compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Methods Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking. Results Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening, and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047. Conclusion From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations.
Read full abstract