PDF HTML阅读 XML下载 导出引用 引用提醒 单木生物量模型估计区域尺度生物量的不确定性 DOI: 10.5846/stxb201405130980 作者: 作者单位: 中国林业科学研究院资源信息研究所,中国林业科学研究院资源信息研究所,国家林业局调查规划设计院 北京 作者简介: 通讯作者: 中图分类号: 基金项目: 国家863重点项目(2012AA12A306);国家自然科学基金项目(31170588) Uncertainty analysis for regional-level above-ground biomass estimates based on individual tree biomass model Author: Affiliation: Research Institute of Forest Resources Information Techniques,CAF Beijing,Research Institute of Forest Resources Information Techniques,CAF Beijing,Academy of Forest Inventory and Planning,State Forestry Administrator Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:采用系统抽样体系江西省固定样地杉木连续观测数据和生物量数据,通过Monte Carlo法反复模拟由单木生物量模型推算区域尺度地上生物量的过程,估计了江西省杉木地上总生物量。基于不同水平建模样本量n及不同决定系数R2的设计,分别研究了单木生物量模型参数变异性及模型残差变异性对区域尺度生物量估计不确定性的影响。研究结果表明:2009年江西省杉木地上生物量估计值为(19.84±1.27) t/hm2,不确定性占生物量估计值约6.41%。生物量估计值和不确定性值达到平稳状态所需的运算时间随建模样本量及决定系数R2的增大而减小;相对于模型参数变异性,残差变异性对不确定性的影响更小。 Abstract:Above-ground forest biomass at regional-level is typically estimated by adding model predictions of biomass from individual trees in a plot, and subsequently aggregating predictions from plots to large areas. There are multiple sources of uncertainties in model predictions during this aggregated process. These uncertainties always affect the precision of large area biomass estimates, and the effects are generally overlooked;however, failure to account for these uncertainties will cause erroneously optimistic precision estimates. Monte Carlo simulation is an effective method for estimating large-scale biomass and assessing the uncertainty associated with multiple sources of errors and complex models. In this paper, we applied the Monte Carlo approach to simulate regional-level above-ground biomass and to assess uncertainties related to the variability from model residuals and parameters separately. A nonlinear model form was used. Data were obtained from permanent sample plots and biomass observation of Cunninghamia lanceolata in JiangXi Province, China. Overall, 70 individual trees were destructively sampled for biomass estimation from June to September, 2009. Based on the commonly used allometric model, we conducted Monte Carlo simulations 1000 times for the biomass model fitting with the biomass data, from which we estimated the biomass of the plot data, and conducted an uncertainty assessment from the model residual variability and parameter variability. Estimates of above-ground biomass in JiangXi Province were obtained by aggregating model predictions of biomass for individual trees within plots, and then calculating the mean of the plots. Four modeling options with different sample sizes and R2 were designed separately, from which Monte Carlo simulations were performed 1000 times and 2000 times, respectively, to study the effects of the model parameter and residual variability on the uncertainty in large-scale biomass estimates. The results revealed that the estimates of above-ground biomass and its uncertainty for C. lanceolata in JiangXi Province in 2009 achieved stability after 500 Monte Carlo simulations, and that the average biomass estimate was 19.84 t/hm2, with additional uncertainty of 1.27 t/hm2, representing 6.41% of the average biomass. With increasing modeling sample size from 30 to 60, the relative uncertainty of biomass estimates decreased from 14.86% to 9.85%, but the uncertainty variations for different levels of R2 values minimally changed. We concluded that: 1) the Monte Carlo approach works well for regional-level estimations of biomass and its uncertainty based on forest inventory data;2) the uncertainty of biomass estimation in large areas should not be overlooked because of the large number of errors when extrapolating from the individual tree to the plot level in forest inventory data;3) with gradually larger modeling sample size, the average biomass increased while the uncertainty values decreased, and the operation times required for achieving the stability of average biomass and corresponding uncertainty in Monte Carlo simulations also were reduced, indicating that increasing modeling sample size is an effective way to reduce uncertainty in regional-level biomass estimations;and 4) model residual variability associated with R2 was less important in model uncertainty of biomass estimates;however, higher R2 does reduce the operation times for achieving stability of Monte Carlo simulations. This study is the first to apply the Monte Carlo simulation approach to estimating regional-level biomass and its uncertainty based on continuous observation data from permanent sample plots. This study is also the first to quantify the effects of uncertainty related to model parameters and residual variability in model predictions of extrapolating individual tree biomass to large area biomass estimates. 参考文献 相似文献 引证文献
Read full abstract