Roles of antinucleon degrees of freedom in the relativistic random phase approximation(RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated with a usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations takes into account only a part of the nucleon-antinucleon states, in order to avoid the divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation which describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, excitation energies of the spurious state and giant monopole states in the no-sea approximation are dominated by those unphysical changes. The baryon current conservation can be described without touching the divergence problems. A schematic model with separable interactions is presented, which makes the structure of the relativistic RPA transparent.
Read full abstract