Understanding the thermal stability of gas hydrate in complex marine geological environment is of importance to hydrate-based carbon sequestration. In this work, the factors affecting the equilibrium of CO2 hydrate in ocean sediments, including quartz sands, inorganic salts and gas impurities were quantitatively measured in a temperature range from 273 to 283 K and a phase equilibrium model of hydrate was established. To reveal the distribution in pore structure, the micro-morphologies of hydrate-bearing sediments were measured by cryo-SEM. Results showed that reduction of initial water saturation, addition of NaCl and CH4 were found to have inhibitory effect on CO2 hydrate equilibrium. Initial water saturation reduced the equilibrium temperature by the capillary pressure, but only 0.3–0.7 K temperature depression was observed as the water saturation reduced to 5 %. About 5.7 K in the average temperature depression was found by the addition of 10 wt% NaCl and 24 mol% CH4. NaCl and CH4 influenced the hydrate equilibrium by changing the water activity and chemical potential of hydrate water lattice. SEM images showed that the hydrate formed in pores of quartz sand had porous surface and coated the sand particles like a layer of cells which are 5–20 μm in diameter, suggesting the hydrate layer exists between the liquid and gas phase. Based on the van der Waals-Platteeuw model, a hydrate equilibrium model was developed. The model provided a good prediction of the hydrate equilibrium in the presence of quartz sand, NaCl and CH4 with an averaged deviation of ±4.2 %, which had the potential to be applicated in more complexed ocean sedimentary environment.
Read full abstract