We designed and successfully synthesized highly substituted electron-deficient nonplanar Ni(II) porphyrins and their derivatives (1-7) in moderate to good yields. These derivatives were comprehensively characterized by various spectroscopic techniques and single-crystal X-ray diffraction (SCXRD) analysis. SCXRD analysis confirmed the structures of compounds 2, 4, and 7, adopting saddle-shape geometry. These nonplanar porphyrins demonstrated significant bathochromic shifts in their absorption spectra compared to parent NiTPP, attributed to the influence of bulky β-substituents and/or peripheral fusion. π-Extended porphyrins 6 and 7 displayed panchromatic absorption spectra extending into the NIR region. Porphyrins 6 and 7 demonstrated a profound anodic shift (∼400 mV) in their first reduction peak potentials compared to precursor NiTPP(NO2)Br6. The experimental absorption spectral pattern matches the simulated absorption spectra obtained from TD-DFT studies. The femtosecond laser intensity-dependent third-order nonlinear optical studies revealed that NiDFP(VCN)2Br6 (6) and NiDFP(VCN)2(PE)6 (7) displayed giant optical nonlinearities compared to the other porphyrins. Among all, NiDFP(VCN)2Br6 (6) possessed the highest two-photon absorption coefficient (β) and cross-section (σTPA) values in the range of 22-33 × 10-10 m/W and 3.77-6.95 × 106 GM, respectively. These findings suggest that the investigated nonplanar π-extended porphyrins are promising candidates for future optoelectronic applications.
Read full abstract