The impact of short-range correlations (SRCs) on neutron star (NS) properties are re-examined across various classes of relativistic mean-field (RMF) models. The coupling strengths of the models are so adjusted that the low-density part of the equation of state (EoS), complemented with saturation properties such as binding energy of symmetric nuclear matter and nuclear symmetry energy responsible for the bulk properties of finite nuclei, remains practically unaffected with the inclusion of SRCs. The EoS for symmetric nuclear matter and the nuclear symmetry energy at supra-saturation densities which governs the EoS for NS matter become softer or stiffer in the presence of the SRCs, depending on the type of RMF model considered. These distinct effects of SRCs are observed to be more significant at higher densities, as expected, when behaviour of the EoS at low densities, which govern the finite nuclei physics, is not compromised. For most of the models with self-couplings of scalar and vector mesons, the EoS of symmetric nuclear matter stiffens, with a slight effect on nuclear symmetry energy with the inclusion of SRCs. Conversely, in the models incorporating cross-couplings between mesons, the addition of SRCs leads to softer symmetry energy, compensating the stiffening effect of the EoS of symmetric nuclear matter. With the inclusion of SRCs, the values of radius and tidal deformability of canonical mass star and maximum mass of NSs for realistic EoSs align well the present constraints on astrophysical observations.
Read full abstract