Porphyra-334 is a member of natural UV-screening compounds named mycosporine-like amino acids found in several marine organisms. The UV excited porphyra-334 has been identified to deexcite quickly by puckering the intramolecular cyclohexenimine ring; however, the reason for such a ring-puckering occurrence is yet unclear. In this study, we show the ring-puckering to be the relaxation pathway of the UV excited π electron which shifts from the in-ring bond to the out-of-ring bond. The ring-puckering is characterized by the torsion among the in-ring and out-of-ring bonds. Since the π electron shift is possible in two different directions at the Franck-Condon UV excited state, it enables two ring-puckering pathways: the previously reported pathway and another one newly identified at present. We also examine the ring-unpuckering pathways which are an analogy of cis/trans photoisomerization, and we find them to be not suited for the π electron shift character of the UV excited state and thus not related to the deexcitation pathway. The present study provides insight into how porphyra-334 exerts the UV-screening ability based on its cyclohexenimine ring structure.
Read full abstract