This review comprehensively explores the evolving role of neuroimaging, specifically magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), in epilepsy research and clinical practice. Beginning with a concise overview of epilepsy, the discussion emphasizes the crucial importance of neuroimaging in diagnosing and managing this complex neurological disorder. The review delves into the applications of advanced MRI techniques, including high-field MRI, resting-state fMRI, and connectomics, highlighting their impact on refining our understanding of epilepsy's structural and functional dimensions. Additionally, it examines the integration of machine learning in the analysis of intricate neuroimaging data. Moving to the clinical domain, the review outlines the utility of neuroimaging in pre-surgical evaluations and the monitoring of treatment responses and disease progression. Despite significant strides, challenges and limitations are discussed in the routine clinical incorporation of neuroimaging. The review explores promising developments in MRI and MRS technology, potential advancements in imaging biomarkers, and the implications for personalized medicine in epilepsy management. The conclusion underscores the transformative potential of neuroimaging and advocates for continued exploration, collaboration, and technological innovation to propel the field toward a future where tailored, effective interventions improve outcomes for individuals with epilepsy.