Data privacy is a serious issue and therefore needs our attention. In this study, we propose masking through randomized response techniques (RRTs) to ensure the privacy and thus to avoid falsification. We assume that the process characteristic is of sensitive nature, and due to privacy issue, the actual measurements cannot be shared with the monitoring team. In such situations, the producer is very likely to falsify the measurements. Consequently, the usual control charting techniques will mislead about the process status. We discuss different data masking strategies to be used with Shewhart-type control charts. The usual Shewhart-type control chart appears to be a subchart of the proposed charts. Average run length (ARL) is used as a performance measure of the study proposals. We have evaluated the performance of the proposed charts for different shift sizes and under different intensities of masking. We have also carried out a comparative analysis for various models under varying sensitivity parameters. We have also compared the performance of the proposals with the traditional Shewhart chart. It is observed that the B-L control chart under the RRT model performs better for smaller shifts and for larger shift sizes, the G-B chart under an unrelated question model tperforms better. A real-life application of the study proposal is also considered where monitoring of thickness of paint on refrigerators is of interest.
Read full abstract