Brain-computer interfaces (BCIs) are well-known instances of how technology can convert a user's brain activity taken from non-invasive electroencephalography (EEG) into computer commands for the purpose of computer-assisted communication and interaction. However, not all users are attaining the accuracy required to use a BCI consistently, despite advancements in technology. Accordingly, previous research suggests that human factors could be responsible for the variance in BCI performance among users. Therefore, the user's internal mental states and traits including motivation, affect or cognition, personality traits, or the user's satisfaction, beliefs or trust in the technology have been investigated. Going a step further, this manuscript aims to discuss which human factors could be potential superordinate factors that influence BCI performance, implicitly, explicitly as well as inter- and intraindividually. Based on the results of previous studies that used comparable protocols to examine the motivational, affective, cognitive state or personality traits of healthy and vulnerable EEG-BCI users within and across well-investigated BCIs (P300-BCIs or SMR-BCIs, respectively), it is proposed that the self-relevance of tasks and stimuli and the user's self-concept provide a huge potential for BCI applications. As potential key human factors self-relevance and the user's self-concept (self-referential knowledge and beliefs about one's self) guide information processing and modulate the user's motivation, attention, or feelings of ownership, agency, and autonomy. Changes in the self-relevance of tasks and stimuli as well as self-referential processing related to one's self (self-concept) trigger changes in neurophysiological activity in specific brain networks relevant to BCI. Accordingly, concrete examples will be provided to discuss how past and future research could incorporate self-relevance and the user's self-concept in the BCI setting - including paradigms, user instructions, and training sessions.