Gaze tracking and pupillometry are established proxies for cognitive load, giving insights into a user's mental effort. In tele-robotic surgery, knowing a user's cognitive load can inspire novel human-machine interaction designs, fostering contextual surgical assistance systems and personalized training programs. While pupillometry-based methods for estimating cognitive effort have been proposed, their application in surgery is limited by the pupil's sensitivity to brightness changes, which can mask pupil's response to cognitive load. Thus, methods considering pupil and brightness conditions are essential for detecting cognitive effort in unconstrained scenarios. To contend with this challenge, we introduce a personalized pupil response model integrating pupil and brightness-based features. Discrepancies between predicted and measured pupil diameter indicate dilations due to non-brightness-related sources, i.e., cognitive effort. Combined with gaze entropy, it can detect cognitive load using a random forest classifier. To test our model, we perform a user study with the da Vinci Research Kit, where 17 users perform pick-and-place tasks in addition to auditory tasks known to generate cognitive effort responses. We compare our method to two baselines (BCPD and CPD), demonstrating favorable performance in varying brightness conditions. Our method achieves an average true positive rate of 0.78, outperforming the baselines (0.57 and 0.64). We present a personalized brightness-aware model for cognitive effort detection able to operate under unconstrained brightness conditions, comparing favorably to competing approaches, contributing to the advancement of cognitive effort detection in tele-robotic surgery. Future work will consider alternative learning strategies, handling the difficult positive-unlabeled scenario in user studies, where only some positive and no negative events are reliably known.
Read full abstract