Unmanned Aerial Vehicle (UAV) control interfaces are critical channels for transferring information between the vehicle and an operator. Research on system performance has focused on enhancing vehicle automation and some work has evaluated cognitive workload for existing UAV interfaces. The potential for usable interface design to reduce cognitive workload during the early design phase has been largely overlooked. This study addresses these gaps by: (1) evaluating the effectiveness of a contemporary UAV interface design tool (the Modified GEDIS-UAV) to moderate user workload; (2) examining the effectiveness of various UAV interface designs for minimizing cognitive workload under different control task pacing; and (3) exploring the use of eye tracking measures, traditionally applied in other domains, as indicators of cognitive workload in UAV operations. We prototyped three different interface designs, classified as “baseline”, “enhanced” and “degraded” interfaces. Cognitive workload in UAV operation was manipulated in terms of levels of vehicle speed (“low” and “high”). Physiological and subjective measures of workload were collected for all combinations of interface design and task demand. Results revealed the “enhanced” interface to yield the lowest operator cognitive workload and supported operator resilience to increased control task demand, as compared to the “baseline” and “degraded” interfaces. In addition, task demand was found to elevate operator cognitive workload, particularly in terms of "mental" and "temporal" demands and operator perceptions of "performance". The study also demonstrated utility of eye-tracking technology for detecting cognitive workload in UAV operations. This research provides practical guidance for UAV control interface design to manage operator workload. The methods employed in the study are applicable to interface evaluation for various types of UAVs and other unmanned systems to enhance human-automation interaction.
Read full abstract