Recent advances in technology have propelled Artificial Intelligence (AI) into a crucial role in everyday life, enhancing human performance through sophisticated models and algorithms. However, the focus on predictive accuracy has often resulted in opaque black-box models that lack transparency in decision-making. To address this issue, significant efforts have been made to develop explainable AI (XAI) systems that make outcomes comprehensible to users. Various approaches, including new concepts, models, and user interfaces, aim to improve explainability, build user trust, enhance satisfaction, and increase task performance. Evaluation research has emerged to define and measure the quality of these explanations, differentiating between formal evaluation methods and empirical approaches that utilize techniques from psychology and human–computer interaction. Despite the importance of empirical studies, evaluations remain underutilized, with literature reviews indicating a lack of rigorous evaluations from the user perspective. This review aims to guide researchers and practitioners in conducting effective empirical user-centered evaluations by analyzing several studies; categorizing their objectives, scope, and evaluation metrics; and offering an orientation map for research design and metric measurement.
Read full abstract