With the proliferation of information globally, the search engine had become an indispensable tool that helps the user to search for information in a simple, easy and quick way. These search engines employ sophisticated document ranking algorithms based on query context, link structure and user behavior characterization. However, all these features keep changing in the real scenario. Ideally, ranking algorithms must be robust enough to time-sensitive queries. Microblog content is typically short-lived as it is often intended to provide quick updates or share brief information in a concise manner. The technique first determines if a query is currently in high demand, then it automatically appends a time-sensitive context to the query by mining those microblogs whose torrent matches with query-in-demand. The extracted contextual terms are further used in re-ranking the search results. The experimental results reveal the existence of a strong correlation between ephemeral search queries and microblog volumes. These volumes are analyzed to identify the temporal proximity of their torrents. It is observed that approximately 70% of search torrents occurred one day before or after blog torrents for lower threshold values. When the threshold is increased, the match ratio of torrent is raised to ∼90%. In addition, the performance of the proposed model is analyzed for different combining principles namely, aggregate relevance (AR) and disjunctive relevance (DR). It is found that the DR variant of the proposed model outperforms the AR variant of the proposed model in terms of relevance and interest scores. Further, the proposed model’s performance is compared with three categories of retrieval models: log-logistic model, sequential dependence model (SDM) and embedding based query expansion model (EQE1). The experimental results reveal the effectiveness of the proposed technique in terms of result relevancy and user satisfaction. There is a significant improvement of ∼25% in the result relevance score and ∼35% in the user satisfaction score compared to underlying retrieval models. The work can be expanded in many directions in the future as various researchers can combine these strategies to build a recommendation system, auto query reformulation system, Chatbot, and NLP professional toolkit.