To enhance the use of wheat bran in chicken feed, a solid-state fermentation approach was used with Lactobacillus paracasei LAC28 and Pediococcus acidilactici BCC-1, along with arabinoxylan-specific degrading enzymes (xylanase, arabinofuranosidase, feruloyl esterase, XAF). The effects of the fermentation process were evaluated both in vitro and in vivo. In the in vitro study, XAF supplementation demonstrated superior performance, significantly reducing the pH of the fermented wheat bran (FWB) and increasing lactic, acetic, and butyric acid levels, total phenol content, and free radical scavenging capacity (P < 0.05) compared to the XAF-free group. In the in vivo study, broilers were fed diets containing either unfermented wheat bran (UFWB) or FWB (fermented individually with LAC28 or BCC-1). Broilers fed FWB with BCC-1 exhibited significant improvements in body weight gain, intestinal morphology, and nutrient digestibility (P < 0.05) compared to the control group. Moreover, the FWB established a healthier microbial community in the avian gastrointestinal tract. Overall, this study demonstrated the potential of combining XAF and bacteria to enhance wheat bran fermentation, benefiting broiler intestinal health and growth. This innovative approach holds promise as a cost-efficient and sustainable strategy to improve the nutritional quality of wheat bran for animal feed applications.
Read full abstract