The use of prior knowledge in the machine learning framework has been considered a potential tool to handle the curse of dimensionality in genetic and genomics data. Although random forest (RF) represents a flexible non-parametric approach with several advantages, it can provide poor accuracy in high-dimensional settings, mainly in scenarios with small sample sizes. We propose a knowledge-slanted RF that integrates biological networks as prior knowledge into the model to improve its performance and explainability, exemplifying its use for selecting and identifying relevant genes. knowledge-slanted RF is a combination of two stages. First, prior knowledge represented by graphs is translated by running a random walk with restart algorithm to determine the relevance of each gene based on its connection and localization on a protein-protein interaction network. Then, each relevance is used to modify the selection probability to draw a gene as a candidate split-feature in the conventional RF. Experiments in simulated datasets with very small sample sizes (n≤30)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(n \\le 30)$$\\end{document} comparing knowledge-slanted RF against conventional RF and logistic lasso regression, suggest an improved precision in outcome prediction compared to the other methods. The knowledge-slanted RF was completed with the introduction of a modified version of the Boruta feature selection algorithm. Finally, knowledge-slanted RF identified more relevant biological genes, offering a higher level of explainability for users than conventional RF. These findings were corroborated in one real case to identify relevant genes to calcific aortic valve stenosis.
Read full abstract