BackgroundAdolescents living in agricultural areas are at higher risk of secondary pesticide exposure; however, there is limited evidence to confirm exposure by pesticide drift for greenhouse floriculture, like rose production.Methods525 adolescents (12–17, 49% male) living in Pedro Moncayo, Ecuador were assessed in 2016. Urinary concentrations of creatinine and pesticide biomarkers (organophosphates, neonicotinoids, and pyrethroids) were measured using mass-spectrometry. Home distance to the nearest greenhouse and surface area of greenhouses within various buffer sizes around the home were calculated. Linear regression assessed whether home distance and surface area of greenhouses was associated with creatinine-adjusted metabolite concentration, adjusting for demographic, socioeconomic, and anthropometric variables. Geospatially weighted regression (GWR) was conducted, adjusting for similar covariates. Getis-ord Gi* identified hot and cold spots using a 1994 m distance band.ResultsThe associations between residential distance to greenhouses and urinary pesticide metabolites differed by metabolite type. The adjusted mean concentrations of OHIM (neonicotinoid) were greater (p-difference = 0.02) among participants living within 200 m (1.08 ug/g of creatinine) vs > 200 m (0.64 ug/g); however, the opposite was observed for 3,5,6-Trichloro-2-pyridinol (TCPy, organophosphate; 0-200 m: 3.63 ug/g vs > 200 m: 4.30 ug/g, p-diff = 0.05). In linear models, greater distances were negatively associated with para-nitrophenol (PNP, organophosphate; percent difference per 50% greater distance [95% CI]: − 2.5% [− 4.9%, − 0.1%]) and somewhat with 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy, organophosphate; − 4.0% [− 8.3%, 0.4%]), among participants living within 200 m of greenhouses. Concurring with the adjusted means analyses, opposite (positive) associations were observed for TCPy (2.1% [95%CI 0.3%, 3.9%]). Organophosphate and pyrethroid hotspots were found in parishes with greater greenhouse density, whereas neonicotinoid hot spots were in parishes with the lowest greenhouse density.ConclusionWe observed negative associations between residential distance to greenhouses with OHIM, PNP and to some extent IMPy, suggesting that imidacloprid, parathion and diazinon are drifting from floricultural greenhouses and reaching children living within 200 m. Positive TCPy associations suggest greenhouses weren't the chlorpyrifos source during this study period, which implies that non-floricultural open-air agriculture (e.g. corn, potatoes, strawberries, grains) may be a source. Further research incorporating diverse geospatial constructs of pesticide sources, pesticide use reports (if available), participant location tracking, and repeated metabolite measurements is recommended.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
15450 Articles
Published in last 50 years
Articles published on Use Of Pesticides
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
14434 Search results
Sort by Recency