This review contains the data concerning the mechanisms of spontaneous fibrinolysis in pulmonary vessels and possibilities of its acceleration in pulmonary embolism. The spontaneous fibrinolysis system is known to be sequential and multifactorial, with the interaction of accelerators (t-PA and u-PA) and inhibitors (alpha-2-antiplasmin, PAI-1, TAFI). The fibrinolytic processes take place in case of prevailing reactions of accelerating factors over inhibiting ones. The endothelium of pulmonary vessels possesses pronounced antithrombogenic and profibrinolytic properties, therefore, the processes of fibrinolysis in the pulmonary vascular bed normally occur more intensively than in the vessels of the systemic circulation. The membrane proteins of the endothelium annexins A2 activate plasminogen, whereas thrombomodulin inhibits the activity of PAI-1. The main approaches to increase the fibrinolysis intensity in conditions of pulmonary embolism may be aimed at elevating the activity of fibrinolytic enzymes (enhancing the synthesis of annexins A2, the use of NMDA-receptor antagonists) and suppressing its inhibitors (the use of monoclonal antibodies to alpha-2-antiplasmin, as well as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI). Promising directions for future research can be the synthesis of a new generation of tissue-type plasminogen activators, and investigations of the possibility of clinical application of antithrombin and thrombomodulin, angiotensin converting enzyme inhibitors and cortisol antagonists. To meet these challenges, it is necessary to develop new models of venous thrombosis and acute pulmonary embolism in different animal species, with the assessment of the changes in the venous haemodynamics and pulmonary microcirculation on the background of administration of a new class of fibrinolytic agents.
Read full abstract