The mining industry produces large amounts of tailings which are disposed of in deposits, which neglects their potential value and represents important economic, social and environmental risks. Consequently, implementing circular economy principles using these unconventional geomaterials may decrease the wide-ranging impacts of raw material extraction. This paper presents an experimental characterization of iron ore tailings, which are the most abundant type of mining waste. The characterization includes various aspects of behavior that are relevant to different types of use as a building material, including physical and identification properties, compaction behavior and stress–strain properties under undrained monotonic and cyclic triaxial loading. The tailings tested can be described as low-plasticity silty sand materials with an average solids density of 4.7, a maximum dry unit weight close to 3 g/cm3 and a higher angle of friction and liquefaction resistance than common granular materials. The experimental results highlight the particular features of the behavior of iron ore tailings and emphasize the potentially promising combination of high shear resistance and high density that favors particular geotechnical applications. Overall, the conclusions provide the basis for promoting the use of mining wastes in the construction of sustainable geotechnical works and underpin the advanced analysis of tailings storage facilities’ safety founded on an open-minded geotechnical approach.
Read full abstract