Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1β, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.
Read full abstract