The paper considers the task of obtaining a quality assessment of facial images for usage in various video surveillance systems, video analytics, and biometric identification. The accuracy of person recognition and classification depends on the quality of the input images. We consider an approach to obtaining single face image quality assessment using a neural network model, which is trained on pairs of images that are split into two possible classes: the quality of the first image is better or worse than the quality of the second one. Two modifications of the selected baseline algorithm are proposed. A face recognition system is applied to change the loss function and image and face quality attributes are used when training the model. Experimental studies of the proposed modifications show their effectiveness. The accuracy of selecting the best and worst frame is increased by 1.3% and 1.9%, respectively.