This study aimed to reveal the urinary and serum metabolic pattern of endometrial cancer (EC) and establish diagnostic models to identify EC from controls, high-risk from low-risk EC, and type II from type I EC. This study included 146 EC patients (comprising 79 low-risk and 67 high-risk patients, including 124 type I and 22 type II) and 59 controls. The serum and urine samples were analyzed using ultraperformance liquid chromatography mass spectrometry. Analysis was used to elucidate the distinct metabolites and altered metabolic pathways. Receiver operating characteristic (ROC) analyses were employed to discover and validate the potential biomarker models. Serum and urine metabolomes displayed significant differences between EC and controls, with metabolites related to amino acid and nicotinamide metabolisms. The serum and urine panels distinguished these two groups with Area Under the Curve (AUC) of 0.821 and 0.902, respectively. The panel consisting of serum and urine metabolites demonstrated the best predictive ability (AUC = 0.953 and 0.976 in discovering and validation group). In comparing high-risk and low risk EC, differential metabolites were enriched in purine and glutamine metabolism. The AUC values for serum and urine panels were 0.818, and 0.843, respectively. The combined panel exhibited better predictive accuracy (0.881 in discovering group and 0.936 in external validation). In the comparison between type I and type II group, altered folic acid metabolism was identified. The serum, urine and combined panels discriminated these two groups with the AUC of 0.829, 0.913 and 0.922, respectively. The combined urine and serum metabolome effectively revealed the metabolic patterns in EC patients, offering valuable diagnostic models for EC diagnosis and classification.