Silica films with various microstructures were fabricated using organic-inorganic (O-I) hybrid solutions containing a mixture of silica sols, polymethylmethacrylate (PMMA), and urethane acrylate nonionomer (UAN) as an amphiphilic polymer, The O-I hybrid solutions were prepared with various UAN:PMMA and polymer/solvent ratios, then spin-coated on glass and calcinated at 450 °C to produce silica films with various microphase-separated structures. For higher UAN and PMMA concentrations, the silica films showed spherical inorganic domains dispersed over the surface, while many pores were formed in the films with lower polymer contents (observed using scanning electron microscopy). The surface hydrophobicity of the silica films was determined using water contact angle measurements. After surface modification using (1H, 1H, 2H, 2H-perfluorooctyl)trichlorosilane solution, the hydrophobicity of films with a highly microphase-separated structure increased significantly, and all surface-modified films showed increasing hydrophobicity with increasing polymer content. Furthermore, pencil scratch hardness tests showed that the silica films formed on glass substrates could withstand the 5H scratch, test even after surface modification.
Read full abstract