Background: Thermophilic Campylobacter are important bacterial pathogens of foodborne diseases worldwide. These organisms’ physiology requires a microaerophilic atmosphere. To date, little is known about the protective catalase mechanism in urease-positive thermophilic campylobacters (UPTC); hence, it was the aim of this study to identify and characterise catalase and catalase-like protein genes in these organisms.Materials and methods: Catalase (katA) and catalase (Kat)-like protein genes from the Japanese UPTC CF89-12 strain were molecularly analysed and compared with C. lari RM2100 and other C. lari and thermophilic Campylobacter reference isolates.Results: A possible open reading frame of 1,422 base pairs, predicted to encode a peptide of 474 amino acid residues, with calculated molecular weight of 52.7 kilo Daltons for katA, was identified within UPTC CF89-12. A probable ribosome binding site, two putative promoters and a putative ρ-independent transcription terminator were also identified within katA. A similar katA cluster also existed in the C. lari RM2100 strain, except that this strain carries no DcuB genes. However, the Kat-like protein gene or any other homologue(s) were never identified in the C. lari RM2100 strain, or in C. jejuni and C. upsaliensis.Conclusions: This study demonstrates the presence of catalase/catalase-like protein genes in UPTC organisms. These findings are significant in that they suggest that UPTC organisms have the protective genetic capability of helping protect the organisms from toxic oxygen stress, which may help them to survive in physiologically harsh environments, both within human and animal hosts, as well as in the natural environment.
Read full abstract