Soil vertical heterogeneity refers to the variation in soil properties and composition with depth. In uncontaminated soils, properties including the organic matter content and nutrient concentrations typically change gradually with depth due to natural processes such as weathering, leaching, and organic matter decomposition. In contaminated soils, heavy metals and organic contaminants can migrate vertically through leaching or root uptake and translocation by plants and macrobiota, if present, leading to vertical heterogeneity in contaminant concentrations at different depths. Contaminants can alter soil properties, and we investigated the implications of soil vertical heterogeneity for germination and microbial functioning. We collected soil from an urban brownfield and created two conditions: structured soil samples collected with the soil core intact and mixed (unstructured) samples. When planted, the germination rate was significantly lower in the structured conditions (3.1 ± 1.7%) compared to mixed soils (17 ± 4.6%), suggesting that the vertical heterogeneity of contaminated soil influenced plant germination. To map the vertical distribution of contaminants and nutrient cycling rates in the structured soil samples, we collected 10 cm-deep soil cores from the barren site and a neighboring vegetated reference site and measured heavy metal concentrations, soil enzyme activities, and organic matter content in five 2 cm vertical layers. In the barren soil cores, metals were found concentrated in the top 2 cm layer, while in the vegetated soil cores, metals were uniformly distributed. No significant differences were observed for the organic matter content or moisture along depth. Published studies on vertical distribution of enzyme activities and metal concentrations have treated the top 10-20 cm as a single layer and thus would have not revealed the thin (<2 cm thick) metal cap on the surface of the barren soil core. Despite the metal cap, enzyme activities in the top layer were similar to those in the lower layers of the barren soil core, suggesting that high metal concentrations do not limit soil enzyme activity under all circumstances. Investigating vertical heterogeneity in postindustrial soils can inform efforts to convert industrial barrens to vegetated environments.