The monitoring of the Land Surface Temperature (LST) by remote sensing in urban areas is of great interest to study the Surface Urban Heat Island (SUHI) effect. Thus, it is one of the goals of the future spaceborne mission TRISHNA, which will carry a thermal radiometer onboard with four bands at a 60-m spatial resolution, acquiring daytime and nighttime. In this study, TRISHNA-like data are simulated from Airborne Hyperspectral Scanner (AHS) data over the Madrid urban area at 4-m resolution. To retrieve the LST, the Temperature and Emissivity Separation (TES) algorithm is applied with four spectral bands considering two main original approaches compared with the classical TES algorithm. First, calibration and validation datasets with a large number of artificial materials are considered (called urban-oriented database), contrary to most of the previous studies that do not use a large number of artificial material spectra during the calibration step, thus impacting the LST retrieval over these materials. This approach produces one TES algorithm with one empirical relationship, called 1MMD TES. Second, two empirical relationships are used, one for the artificial materials and the other for the natural ones. These relationships are defined thanks to two calibration datasets (artificial-surface-oriented database and natural-surface-oriented database, respectively), one containing mainly artificial materials and the other mainly natural ones. Finally, in order to use two empirical relationships, a ground cover classification map is given to the TES algorithm to separate artificial pixels from natural ones. This approach produces one material-oriented TES algorithm with two empirical relationships, called 2MMD TES. In order to perform a complete comparison of these two addenda in the TES algorithm and their impact on the LST retrieval, both AHS and TRISHNA spatial resolutions are studied, i.e., 4-m and 60-m resolutions, respectively. Relative to the calibration of the TES algorithm, we conclude that (1) the urban-oriented database is more representative of the urban areas than previous databases from the state-of-the-art, and (2) using two databases (artificial-surface-oriented and natural-surface-oriented) instead of one prevents the overestimation of the LST over natural materials and the underestimation over artificial ones. Thus, for both studied spatial resolutions (AHS and TRISHNA), we find that the 2MMD TES outperforms the 1MMD TES. This difference is especially important for artificial materials, corroborating the above conclusion. Furthermore, the comparison with ground measurements shows that, on 4-m spatial resolution images, the 2MMD TES outperforms both the 1MMD TES and the TES from the state-of-the-art used in this study. Finally, we conclude that the 2MMD TES method, with only four spectral bands, better retrieves the LST over artificial and natural materials and that the future TRISHNA sensor is suited for the monitoring of the LST over urban areas and the SUHI effect.
Read full abstract