Abstract The circulation features associated with intense precipitation events over the La Plata Basin (LPB) during the austral summers of 2001/02 and 2002/03 are investigated using the Eta Model runs generated at the University of Maryland. Based on the main mode of variability over LPB, two regions were selected: (i) the region of Brazil that is at the core of the South American summer monsoon system (SAMS) and (ii) the central region of LPB in southeastern South America (SESA). First, a comparison between the 24-h total precipitation in the Eta Model and the 24-h observed precipitation was made. Results show that the Eta Model captures well the temporal variability of precipitation events in both regions, although a positive bias is noticed over SAMS. Likewise, the model reproduces the distribution of precipitation rate over SESA, but not over SAMS. Nevertheless, the distribution of the moisture flux convergence intensity, which represents the dynamical forcing, is closer in shape to the observed precipitation distribution, suggesting that the model can be a useful tool in identifying the forcing for heavy precipitation events over both regions. Composites of atmospheric and surface variables were constructed for intense precipitation events during austral summer over both regions. Intense rainfall over the central La Plata Basin (SESA) is linked to an amplified upper-tropospheric midlatitude wave pattern in which rainfall occurs just east of an enhanced cyclonic circulation. Accompanying this circulation pattern, an enhanced low-level jet (LLJ) transports warm, moist air from the Amazon toward the region, contributing to an increase in the thermal contrast over SESA. The combined patterns of thermal and dynamical variables suggest that large-scale systems, like frontal systems, are important in producing intense rainfall events. The SAMS region events have a similar upper-level structure as in SESA, but they are longer lived. In this case, the moisture fluxes are determined by an eastward shift of the LLJ, but also directly from the Amazon Basin to the north. As expected, precipitation events produce large increases of simulated runoff. The largest impact is on the SESA region, affecting the streamflow of the Paraná, Paraguay, and Uruguay, the three main rivers of the LPB.
Read full abstract