AbstractObjective: The study aims to build a comprehensive network structure of psychopathology based on patient narratives by combining the merits of both qualitative and quantitative research methodologies. Research methods: The study web-scraped data from 10,933 people who disclosed a prior DSM/ICD11 diagnosed mental illness when discussing their lived experiences of mental ill health. The study then used Python 3 and its associated libraries to run network analyses and generate a network graph. Key findings: The results of the study revealed 672 unique experiences or symptoms that generated 30023 links or connections. The study also identified that of all 672 reported experiences/symptoms, five were deemed the most influential; “anxiety,” “fear,” “auditory hallucinations,” “sadness,” and “depressed mood and loss of interest.” Additionally, the study uncovered some unusual connections between the reported experiences/symptoms. Discussion and recommendations: The study demonstrates that applying a quantitative analytical framework to qualitative data at scale is a useful approach for understanding the nuances of psychopathological experiences that may be missed in studies relying solely on either a qualitative or a quantitative survey-based approach. The study discusses the clinical implications of its results and makes recommendations for potential future directions.
Read full abstract