BackgroundThe effects of a diverse spectrum of malaria interventions were evaluated through a deterministic Plasmodium vivax transmission model. This approach aimed to provide theoretical evidence of the performance of these interventions once implemented for achieving malaria elimination.MethodsAn integrated intervention portfolio, including mass drug administration, insecticide treatment, and untreated bed nets, was analyzed through modeling. Additionally, data-driven calibration was implemented to infer coverages that effectively reproduced historical malaria patterns in China from 1971 to 1983.ResultsMDA utilizing primaquine emerged as the most effective single intervention, achieving a 70% reduction in malaria incidence when implemented at full coverage. Furthermore, a strategic combination of MDA with primaquine, chloroquine, untreated bed nets, and seasonal insecticide treatments effectively eradicated malaria, attaining elimination at a coverage level of 70%. It was conclusively demonstrated that an integrated approach combining MDA and vector control measures is essential for the successful elimination of malaria.ConclusionHigh coverage of mass drug administration with primaquine and chloroquine before transmission was the key driver of the malaria decline in China from 1971 to 1983. The best-fit intervention coverage combinations derived from calibration are provided as a reference for malaria control in other countries.
Read full abstract