Magnetic flux leakage (MFL) and ultrasonic testing (UT) are widely used in-line inspection technologies to detect corrosion defects along pipelines. The integration of MFL and UT data has the potential to provide complementary insights that facilitate a comprehensive assessment of pipeline integrity. However, due to the inherent dissimilarity with their underlying physical principles, these techniques yield notable disparities in signal characteristics, posing challenges in integrating these multimodal data. This study aims to establish a translation mapping between MFL and UT signals to achieve consistent physical interpretations across the two modalities. Thus, this study explored the feasibility of generative adversarial network (GAN) based models encompassing both supervised and unsupervised translation approaches contingent on the availability of aligned data. Furthermore, two translation modes, MFL-UT and UT-MFL, were analyzed, respectively, to understand the effectiveness of the translation direction. The experimental results demonstrate satisfactory performance for both aligned and unaligned data translation, with the UT-MFL translation direction yielding superior results. Overall, the translation approaches pave the way for future applications, especially in subsequent data analysis tasks such as registration, comparison, and fusion of multimodal data.
Read full abstract