The Feng Chu suspension bridge in Xiangyang holds the distinction of having one of the shortest span lengths among global suspension bridges, measuring less than half the length of conventional designs. This paper focuses on the engineering background of the bridge and delves into the analysis of the main cable structure and construction control methods for short-span suspension bridges with three towers. The study examines the impact of elastic modulus deviation in the main cable and the dead-load error of the stiffening beam on key parameters such as the unstressed length of the main cable, pre-deflection of the cable saddle, and mid-span elevation of the empty cable. Additionally, the effects of temperature, span, and cable length on the sag of the empty cable during the erection process are analyzed. Findings reveal that the elastic modulus and dead-load error significantly influence the unstressed length of the main cable, pre-deflection of the saddle, and the shape of the empty cable. This study establishes a relationship between changes in cable length and mid-span sag, providing valuable theoretical guidance for aligning and adjusting the main cable strands. Furthermore, synchronized alignment adjustments for the two mid-span sections are proposed to prevent main cable strand sliding, which may occur due to significant differences in sag between the sections.
Read full abstract