In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell–focused investigation has outpaced investigation of B cells. Most B cell–related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.