Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Read full abstract