We report quantum chemical studies on possible molecular devices working based on electric field-induced intramolecular charge transfer (EFIMCT). In the case of donor-acceptor (DA)-type molecular systems, intramolecular charge transfer (IMCT) can be induced by applying the external electric field to molecular systems along the charge transport direction, providing a possible switching mechanism which does not depend upon the electron-phonon coupling effect and is different from the negative differential resistance mechanism observed in the well-known NO2-substituted phenylene ethynylene oligomers. When the EFIMCT proceeds, the molecular systems have strong static electron correlation effects, where the standard nonequilibrium Green's function-density functional theory (DFT) approach cannot be applied to the molecular junction. As a first step toward practical switching devices, we do quantum chemical studies on the EFIMCT in such molecular systems as an isolated molecule, instead of using the electrode-junction-electrode open quantum system model. A prototype molecule P1 is designed as a tentative candidate molecule where the EFIMCT can proceed. The complete active space self-consistent field (CASSCF) molecular orbital calculations on P1 indicate that the EFIMCT can proceed at the external electric field intensity of 0.003 au, corresponding to about 2.25 V bias voltage. This calculated result strongly suggests that the development of this type of switching devices working at practically low bias voltage is feasible if the molecular system is properly designed. Broken symmetry unrestricted Hartree-Fock and spin-polarized Kohn-Sham DFT calculations also qualitatively reproduce the CASSCF results on P1, to some extent, indicating that these approaches can be employed for rough estimations on the EFIMCT such as the first screening of a large quantity of candidate molecules for this type of molecular devices. The possibility of molecular memory devices based on the EFIMCT is also discussed by analyzing the ground and excited potential energy surface model. Remaining challenges to develop practical molecular devices are discussed.
Read full abstract