In recommender systems, users rate items, and are subsequently served other product recommendations based on these ratings. Even though users usually rate a tiny percentage of the available items, the system tries to estimate unobserved preferences by finding similarities across users and across items. In this work, we treat the observed ratings data as partially observed, dense, weighted, bipartite networks. For a class of systems without outside information, we adapt an approach developed for dense, weighted networks to account for unobserved edges and the bipartite nature of the problem. The approach begins with clustering both users and items into communities, and locally estimates the patterns of ratings within each subnetwork induced by restricting attention to one community of users and one community of items community. The local fitting procedure relies on estimating local sociability parameters for every user and item, and selecting the function that determines the degree correction contours which best models the underlying data. We compare the performance of our proposed approach to existing methods on a simulated data set, as well as on a data set of joke ratings, examining model performance in both cases at differing levels of sparsity. On the joke ratings data set, our proposed model performs better than existing alternatives in relatively sparse settings, though other approaches achieve better results when more data is available. Collectively, the results indicate that despite struggling to pick up subtler signals, the proposed approach’s recovery of large scale, coarse patterns may still be useful in practical settings where high sparsity is typical.
Read full abstract