In this paper, we consider a global optimization problem where the objective function is assumed to be Lipschitz-continuous with an unknown Lipschitz constant. Building upon the recently introduced BIRECT (BIsection of RECTangles) algorithm, we propose a new diagonal partitioning and sampling scheme. Our framework, named BIRECT-V (V for vertices), combines bisection with the sampling of two points. In the initial hyper-rectangle, these points are located at 1/3 and 1 along the main diagonal. Unlike most DIRECT-type algorithms, where evaluating the objective function at vertices is not suitable for bisection, our strategy, when combined with bisection, provides more comprehensive information about the objective function. However, the creation of new sampling points may coincide with existing ones at shared vertices, resulting in additional evaluations of the objective function and increasing the number of function evaluations per iteration. To overcome this issue, we propose modifying the original optimization domain to obtain a good approximation of the global solution. Experimental investigations demonstrate that this modification positively impacts the performance of the BIRECT-V algorithm. Our proposal shows promise as a global optimization algorithm compared to the original BIRECT and two popular DIRECT-type algorithms on a set of test problems. It particularly excels at high-dimensional problems
Read full abstract